Welcome to the new CWC Digital Resource Hub

[dynamic_title_articles_tags]
150 results found...
Sort By Dropdown Icon
Article

Most building envelope / building enclosure failures can be traced back to water. If we can learn to manage (rather than control) water in the building envelope/enclosure, we will have learned how to master an essential component of building science. We have deliberately chosen the term “manage” since it implies using the laws of nature to our advantage rather than attempting to conquer nature by brute force. Attempts to control water movement by face sealing walls, for example, require perfect materials, workership and maintenance,  commodities which are rarely available to us. Management on the other hand implies designing assemblies which can deflect, drain, store and dry moisture, using materials suited to the various microclimates which the outside climate, inside climate and wall construction provide.

In the building science context, the transport of water can be divided into three main categories:

  1. water transported through porous materials by water vapour diffusion, either from the inside or from the outside
  2. water vapour carried by moving air, and
  3. liquid or bulk water from rain, wind driven rain, melting snow, groundwater driven by gravity or kinetic energy

Water Vapour Diffusion

The rate of water vapour diffusion through a porous material is determined by a water vapour pressure gradient (or water vapour molecule concentration gradient) from one side to the other side of the material, and the permeance of the material given in “perms” in the U.S. or ng/pa.s.m2 in Canada (1 perm = 57 ng/pa.s.m2). The greater the water vapour pressure gradient, the greater the rate of diffusion. The greater the permeance, the greater the rate of diffusion.

These Durability Notes will focus on two types or categories of vapour diffusion: Water Vapour Diffusion from Inside, and Water Vapour Diffusion from the Outside. Additionally, categories include air leakage from the inside, exterior moisture/wetting and drying potential to the outside and to the inside. 

Water vapour diffusion from the inside is typically a wintertime phenomenon in cold climates, and can be managed by either maintaining the indoor relative humidity (rh) at a safe level (CMHC recommends a maximum of 40 to 50% indoor rh in the winter time). 

Water Vapour Diffusion from Outside is typically a late spring, summer or early fall phenomenon in a cold climate, and is usually of a specific category known as “solar-driven moisture”  when it presents moisture related problems. Solar driven moisture is happens when a porous cladding capable of absorbing and storing water (such as a brick veneer or wood siding) becomes wet due to a rain event, and then the sun shines on the wall cladding, heating it up often up to over 40ºC above the ambient air temperature, resulting in very high vapour pressures within the porous cladding, which then drives the water vapour into the wall. This phenomenon is most common on east and west elevations as these receive the maximum solar exposure in the summer.  Some common methods for avoiding this phenomenon involve using non-absorptive claddings such as vinyl siding or non-absorptive treatments on wood siding, by providing a well vented cavity vented to the outside behind brick veneers and other absorptive claddings, or by providing shading to east and west facing walls.

Air Leakage Transported Moisture from Inside is typically a wintertime phenomenon in cold climates, and can typically cause greater moisture related problems than water vapour diffusion. This phenomenon occurs when warm, moisture laden interior air is not prevented from leaking into a building assembly, and comes in contact with a cold, low permeability material which is at a temperature below the dew point temperature of the indoor air, where the moisture then condenses on the cold surface. If this moisture cannot be drained away and accumulates it may result in mould, rot, corrosion etc. This phenomenon can be prevented in several ways and combinations of ways, including the use of continuous interior air barriers (eg. taped drywall with all penetrations sealed, polyethylene air barriers/vapour retarders), by designing the assembly such that the first air-tight material in the assembly is at a temperature above the dew point temperature of the indoor air (eg.using  Insulative exterior sheathing), by using materials which are not moisture susceptible, and by maintaining a safe indoor wintertime relative humidity.

Exterior Moisture/Wetting (Rain) can present problems either when the water can penetrate/leak into an assembly where it comes in contact with and accumulates in/on moisture-susceptible materials, (made worse by rain in combination with wind, called wind-driven rain), or when the rain comes in contact with susceptible claddings for extended periods of time (again made worse by wind-driven rain). Walls facing the prevailing wind for a given region are at highest risk. Rain falling straight down without wind can be relatively easily dealt with by providing adequate roof-overhangs, eaves troughs and flashings, and by using cladding materials which are not susceptible to moisture related problems. Wind-driven rain is more difficult to deal with, but the same approaches apply. In addition, it should always be assumed that at some point in time, water will penetrate into an assembly, and it must be allowed to get back out by the use of flashings and drainage planes, by allowing drying to both sides if possible, and by using materials not susceptible to moisture related damage.

Drying Potential to the Inside and to the Outside can in some cases, moisture from within the assembly will have to be able to dry to the inside or to the outside of the assembly to avoid deterioration of the wall or wetting of the building interior.  Excess moisture can move into the assembly from the interior or from the exterior. Moisture can also be built into the assembly when wet materials or components are used at the time of construction. Assemblies that get wet and that are able to dry are generally more durable than otherwise.

Deterioration Mechanisms

  • Mould
  • Rot
  • Corrosion
  • Freeze-thaw

Understanding the Simulated Durability Analysis Results


WUFI Hygrothermal Modeling and Field Experience Rating
This represents the result of a combined analysis of field experience and comprehensive WUFI analyses on the selected wall assembly in each of the 5 climate conditions:

High PassDark Green: HIGH PASS

Field: Good experience under wide range of conditions
Physics: Well understood physics and sound basis for design
Hygrothermal Modelling: Simulations support field experience and expectations from physics

greenLight Green: PASS

Field: Good experience under normal conditions
Physics: Well understood physics; expected to  be slightly sensitive to details and workmanship
Hygrothermal Modelling: Simulations support field experience and expectations from physics

yellowYellow: CONDITIONAL PASS

Field: Acceptable experience under  normal conditions; more sensitive to details, workmanship, and microclimates
Physics: More complex physics, expected to be more sensitive to details and workmanship
Hygrothermal Modelling: Field experience and physics can only be explained by expert modellers

orangeOrange: CONDITIONAL FAIL

Field: Demonstrated to be risky in certain situations
Physics: More complex physics, expected to be VERY sensitive to details and workmanship
Hygrothermal Modelling: Field experience and physics can only be explained by expert modellers

Building Codes have air barrier and rain intrusion requirements that are assumed to be complied with.  Failure to meet code requirements can result in walls that are not durable.

It is important to note that all the assemblies were simulated assuming no air leakage and no water intrusion/leakage.  As a result, the WUFI durability simulations do not consider the limited drying potential associated with the use of low permeance sheathing materials when combined with poor air barrier installation and flashing details.

Please see WUFI Assumptions for more details.

Outboard to Inboard Ratio Compliance
This scale represents the result of an outboard to inboard analysis on the wall assemblies using low permeance exterior sheathings:

PASS – Green indicates that the wall meets the climate’s required minimum ratio
redFAIL – Red indicates that the wall does not meet the climate’s required minimum ratio and the outboard sheathing’s permeance must be examined to verify Code compliance
Article

Code Table

Last updated: January 2017

DISCLAIMER: The Canadian Wood Council’s Wall Thermal Design Calculator has been developed for information purposes only. Reference should always be made to the Building Code having jurisdiction. This tool should not be relied upon as a substitute for legal or design advice, and the user is responsible for how the tool is used or applied.

Article

 

Understanding the Simulated Durability Analysis Results


WUFI Hygrothermal Modeling and Field Experience Rating
This represents the result of a combined analysis of field experience and comprehensive WUFI analyses on the selected wall assembly in each of the 5 climate conditions:

High PassDark Green: HIGH PASS

Field: Good experience under wide range of conditions
Physics: Well understood physics and sound basis for design
Hygrothermal Modelling: Simulations support field experience and expectations from physics
greenLight Green: PASS

Field: Good experience under normal conditions
Physics: Well understood physics; expected to  be slightly sensitive to details and workmanship
Hygrothermal Modelling: Simulations support field experience and expectations from physics
yellowYellow: CONDITIONAL PASS

Field: Acceptable experience under  normal conditions; more sensitive to details, workmanship, and microclimates
Physics: More complex physics, expected to be more sensitive to details and workmanship
Hygrothermal Modelling: Field experience and physics can only be explained by expert modellers
orangeOrange: CONDITIONAL FAIL

Field: Demonstrated to be risky in certain situations
Physics: More complex physics, expected to be VERY sensitive to details and workmanship
Hygrothermal Modelling: Field experience and physics can only be explained by expert modellers

Building Codes have air barrier and rain intrusion requirements that are assumed to be complied with.  Failure to meet code requirements can result in walls that are not durable.

It is important to note that all the assemblies were simulated assuming no air leakage and no water intrusion/leakage.  As a result, the WUFI durability simulations do not consider the limited drying potential associated with the use of low permeance sheathing materials when combined with poor air barrier installation and flashing details.

Please see WUFI Assumptions for more details.

Outboard to Inboard Ratio Compliance
This scale represents the result of an outboard to inboard analysis on the wall assemblies using low permeance exterior sheathings:

greenGreen indicates that the wall meets the climate’s required minimum ratio
redRed indicates that the wall does not meet the climate’s required minimum ratio and the outboard sheathing’s permeance must be examined to verify Code compliance
Article

The durability of wood is often a function of water, but that doesn’t mean wood can never get wet. Quite the contrary, wood and water usually live happily together. Wood is a hygroscopic material, which means it naturally takes on and gives off water to balance out with its surrounding environment. Wood can safely absorb large quantities of water before reaching moisture content levels that will be inviting for decay fungi.

Moisture content (MC) is a measure of how much water is in a piece of wood relative to the wood itself. MC is expressed as a percentage and is calculated by dividing the weight of the water in the wood by the weight of that wood if it were oven dry. For example, 200% MC means a piece of wood has twice as much of its weight due to water than to wood. Two important MC numbers to remember are 19% and 28%. We tend to call a piece of wood dry if it is at 19% or less moisture content. Fiber saturation averages around 28%.

Fiber saturation is an important benchmark for both shrinkage and for decay. The fibers of wood (the cells that run the length of the tree) are shaped like tapered drinking straws. When fibers absorb water, it first is held in the cell walls themselves. When the cell walls are full, any additional water absorbed by the wood will now go to fill up the cavities of these tubular cells. Fiber saturation is the level of moisture content where the cell walls are holding as much water as they can. Water held in the cell walls is called bound water, while water in the cell cavities is called free water. As the name implies, the free water is relatively accessible, and an accessible source of water is one necessity for decay fungi to start growing. Therefore, decay can generally only get started if the moisture content of the wood is above fiber saturation. The fiber saturation point is also the limit for wood shrinkage. Wood shrinks or swells as its moisture content changes, but only when water is taken up or given off from the cell walls. Any change in water content in the cell cavity will have no effect on the dimension of the wood. Therefore, wood only shrinks and swells when it changes moisture content below the point of fiber saturation.

Like other hygroscopic materials, wood placed in an environment with stable temperature and relative humidity will eventually reach a moisture content that yields no vapor pressure difference between the wood and the surrounding air. In other words, its moisture content will stabilize at a point called the equilibrium moisture content (EMC). Wood used indoors will eventually stabilize at 8-14% moisture content; outdoors at 12-18%. Hygroscopicity isn’t necessarily a bad thing – this allows wood to function as a natural humidity controller in our homes. When the indoor air is very dry, wood will release moisture. When the indoor air is too humid, wood will absorb moisture.

Wood shrinks/swells when it loses/gains moisture below its fiber saturation point. This natural behaviour of wood is responsible for some of the problems sometimes encountered when wood dries. For example, special cracks called checks can result from stresses induced in a piece of wood that is drying. As the piece dries, it develops a moisture gradient across its section (dry on the outside, wet on the inside). The dry outer shell wants to shrink as it dries below fiber saturation, however, the wetter core constrains the shell. This can cause checks to form on the surface. The shell is now set in its dimension, although the core is still drying and will in turn want to shrink. But the fixed shell constrains the core and checks can thus form in the core. Another problem associated with drying is warp. A piece of wood can deviate from its expected shape as it dries due to the fact that wood shrinks different amounts in different directions. It shrinks the most in the direction tangential to the rings, about half as much in the direction perpendicular to the rings, and hardly at all along the length of the tree. Where in the log a piece was cut will be a factor in how it changes shape as it shrinks. One advantage of usingdry lumber is that most of the shrinkage has been achieved prior to purchase. Dry lumber is lumber with a moisture content no greater than 19%; wood does most of its shrinking as it drops from 28-19%. Dry lumber will have already shown its drying defects, if any. It will also lead to less surprises in a finished building, as the product will stay more or less at the dimension it was upon installation. Dry lumber will be stamped with the letters S-DRY (for surfaced dry) or KD (for kiln dry).

Another way to avoid shrinkage and warp is to use composite wood products, also called engineeredwood products. These are the products that are assembled from smaller pieces of wood glued together – for example, plywood, OSB, finger-jointed studs and I-joists. Composite products have a mix of log orientations within a single piece, so one part constrains the movement of another. For example, plywood achieves this crossbanding form of self-constraint. In other products, movements are limited to very small areas and tend to average out in the whole piece, as with finger-jointed studs.

Article

Wood is biodegradable – that’s a characteristic we normally consider to be one of the benefits of choosing natural materials. Organisms exist that can break down wood into its basic chemicals so that fallen logs in the forest can contribute to the growth of the next generation of life. This process – essential in the forest – must be prevented when we use wood in buildings.

A variety of fungi, insects, and marine borers have the capability to break down the complex polymers which make up the wood structure. In Canada, fungi are a more serious problem than insects. The wood-inhabiting fungi can be separated into moulds, stainers, soft-rot fungi and wood-rotting basidiomycetes. The moulds and stainers can discolour the wood however they do not significantly damage the wood structurally. Soft-rot fungi and wood-rotting basidiomycetes can cause strength loss in wood, with the basidiomycetes the ones responsible for decay problems in buildings. With regard to insects, carpenter ants only cause problems in decayed wood, and significant subterranean termite activity is confined to a few southern areas of Canada. However, other parts of the world have a serious problem with termites.

A decaying log Decayed wood is the result of a series of events including a sequence of fungal colonization. The spores of these fungi are ubiquitous in the air for much of the year. Wood-rotting fungi require wood as their food source, an equable temperature, oxygen and water. Water is normally the only one of these factors that we can easily manage. This may be made more difficult by some fungi, which can transport water to otherwise dry wood. It can also be difficult to control moisture once decay has started, since the fungi produce water as a result of the decay process.

The outer portion of this log is being attacked by a decay fungus. Note that the damage is held back at the line between heartwood and sapwood. To understand why, click here to read about natural durability.

 

More Information

Click Here for a 26-page paper on biodeterioration, including illustrations and bibliography.

For answers to common questions on decay, visit the FAQ page

Article

Termites, sometimes called “white ants” are a social insect, more closely related to cockroaches than ants. They can be distinguished from ants by the absence of a narrow waist on the body and their typically white colour. Under a hand lens, termite antennae are straight whereas those of ants have an elbow. Flying reproductive termites (alates) can be distinguished from flying ants by the equal size of all four termite wings. Three types of termites can be distinguished on the basis of their moisture requirements:

  • Damp-wood termites
  • Dry-wood termites
  • Subterranean termites

Termites

Damp-wood termites are particularly prevalent in coastal British Columbia and the Pacific Northwest of the USA. They only attack and help physically break down decaying trees in forest ecosystems and can be controlled by eliminating the moisture source which has led to decay. They are rarely a problem in buildings.

Termites2

Dry-wood termites on the other hand pose significant hazards to exposed, accessible wooden infrastructure, since they need no significant moisture source, and mated pairs can fly into buildings and start up a nest in dry wood. Consequently, control measures designed to separate wood from soil or moisture are ineffective. On the North American Continent, dry-wood termites are found only from the extreme south of the USA into Mexico.

Subterranean termites do need a reliable source of moisture, normally the soil, but they have the capability to carry their required moisture needs into dry wood in buildings. Although satellite nests can occur in buildings, their main nests are normally in soil or wood in contact with soil. Subterranean termites build characteristic shelter-tubes (tunnels) of mud, wood fragments and bodily secretions, which allow them to pass from the soil to wood above ground without being exposed to drying air or predators. These shelter tubes can extend for several metres over inert substrates, such as concrete foundation walls. Termites can also pass through cracks in concrete as narrow as 1.5 mm. Within the subterranean group, one particular species: the Formosan termite (Coptotermes formosanus Shiraki), is the most problematic for wooden infrastructure. Although individuals are smaller than the species mentioned above, because of sheer numbers Formosan termite colonies can be nine times more aggressive in terms of wood consumption. This species is particularly problematic in parts of Southeastern USA, particularly Florida, where it was introduced after WWII. It is unlikely to spread north into Canada although Canada does have other, less-aggressive species of subterranean termites. Subterranean termites are the most economically important group worldwide.

More Information

Click here for a termite map of Canada.

Click here for a termite map of SW Ontario.

Click here for a termite map of British Columbia. 

 

Additional Sources of Information on Termites

Louisiana State University Agricultural Center

City of Guelph

Municipality of Kincardine

 

Article

Please refer to the pdf documents below for Frequently Asked Questions pertaining to durability:

General

Wood Decay and repair

Discoloration

Finishing

Mould

Treated Wood

Article

Please refer to the pdf documents below for Frequently Asked Questions pertaining to durability:

General

Wood Decay and repair

Discolouration

Finishing

Mould

Treated Wood

Article

Fortunately for Canada, most of this country lies north of the limit for termites on the North American continent. However, because termites and people both prefer the warmer parts of this country, 20% of Canada’s population live in areas where termites are present. Long winters limit termite activity in the wild, but the warmth provided by our buildings seems to encourage more serious problems in urban environments. Damage caused by the Eastern subterranean termite, (Reticulitermes flavipes Kollar), has reached economically important levels in areas of Toronto and other cities in Southern Ontario. There are some suggestions that the Western subterranean termite, (Reticulitermes hesperus Banks), may be causing significant damage in the Okanagan region of British Columbia.

Termites are a much more serious threat in many of our export markets such as the Southeastern USA, Japan and Southeast Asia. While termite control measures appropriate to each region are specified in local and regional building codes, an overview of such measures may be of use to Canadian marketers of wood products and manufactured homes. Termite control measures can be broadly grouped into six categories:

  1. Suppression
  2. Site Management
  3. Soil Barrier
  4. Slab/foundation details
  5. Structural durability
  6. Surveillance and Remediation

Click Here for more details on the 6 strategies

More Information

 

Termite Control and Wood-Frame Buildings– 11-page illustrated bulletin from CWC, further covering the 6-point integrated strategy discussed. Includes photos of termite control products.

Integrated Control of Subterranean Termites: The 6S Approach. This 20-page Forintek paper introduces and thoroughly discusses the 6-point integrated strategy. Includes very specific design and maintenance advice.
Termite Map of North America

 

Combatting Termites – very short and simple summary fact sheet from Forintek.

Article
Click Here for more information of field treatment

Holes drilled to apply depot, supplementary or remedial treatments should be on vertical surfaces or undersides, where possible, to avoid creating additional routes for moisture entry. In the case of supplementary treatment, cut ends should be placed so they are not in ground contact where possible.

Holes for treatment should not be drilled below ground level if it can possibly be avoided. All holes should be closed with a tight-fitting plug. Ideally this should be removable to allow re-treatment. Holes for water-soluble treatments should be placed in the right locations to intercept moisture close to its points of entry. Look carefully at the structure and think about moisture sources, water traps, moisture entry points, moisture flow and signs of moisture entry.

Moisture sources include direct rainfall, diverted rainfall (via windows, cladding, balcony and walkway surfaces, roof overhangs, flashing, parapets, eavestroughs and downspouts), rain penetration of moisture barriers via nail holes, splits, failure of joints or deterioration of caulking, rain splash, blowing snow, ice dams, condensation, concrete foundations, soil contact, irrigation systems, drain and plumbing leaks.

Water traps include metal “shoes”, V joints, checks, appressed boards, cupped horizontal surfaces and anywhere a rim is created at the edge of a horizontal surface. Accumulation of dirt and debris often indicates a water trap. Growth of algae also indicates locations where moisture hangs around longer after rain.

Moisture entry points include all locations with end grain, around nails, screws and bolts plus any other holes or penetrations, checks and delaminations.

Moisture flow in wood may be 100 to 1000 times faster along than across the grain. Patterns of moisture distribution in wood are therefore commonly elongated cones or lens shapes centred on the point of entry.

Signs of moisture entry include swelling, darker colouration, fungal stain, iron stain around fasteners, nail popping and flaking of film-forming surface finishes. Confirmation of moisture contents conducive to decay can be made using electrical-resistance type moisture meters. Capacitance-type moisture meters may also be useful, but these can give erroneous results in the area of metal fittings.

Article

Canadian R Value Code Requirements

Code Table

Last updated: January 2017

DISCLAIMER: The Canadian Wood Council’s Wall Thermal Design Calculator has been developed for information purposes only. Reference should always be made to the Building Code having jurisdiction. This tool should not be relied upon as a substitute for legal or design advice, and the user is responsible for how the tool is used or applied.

1 2 3 4 5 6 7 8 9 10 11 12 13

Get Access to Our Resources

Stay in the loop and don’t miss a thing!

  • United States+1
  • United Kingdom+44
  • Afghanistan (‫افغانستان‬‎)+93
  • Albania (Shqipëri)+355
  • Algeria (‫الجزائر‬‎)+213
  • American Samoa+1
  • Andorra+376
  • Angola+244
  • Anguilla+1
  • Antigua and Barbuda+1
  • Argentina+54
  • Armenia (Հայաստան)+374
  • Aruba+297
  • Australia+61
  • Austria (Österreich)+43
  • Azerbaijan (Azərbaycan)+994
  • Bahamas+1
  • Bahrain (‫البحرين‬‎)+973
  • Bangladesh (বাংলাদেশ)+880
  • Barbados+1
  • Belarus (Беларусь)+375
  • Belgium (België)+32
  • Belize+501
  • Benin (Bénin)+229
  • Bermuda+1
  • Bhutan (འབྲུག)+975
  • Bolivia+591
  • Bosnia and Herzegovina (Босна и Херцеговина)+387
  • Botswana+267
  • Brazil (Brasil)+55
  • British Indian Ocean Territory+246
  • British Virgin Islands+1
  • Brunei+673
  • Bulgaria (България)+359
  • Burkina Faso+226
  • Burundi (Uburundi)+257
  • Cambodia (កម្ពុជា)+855
  • Cameroon (Cameroun)+237
  • Canada+1
  • Cape Verde (Kabu Verdi)+238
  • Caribbean Netherlands+599
  • Cayman Islands+1
  • Central African Republic (République centrafricaine)+236
  • Chad (Tchad)+235
  • Chile+56
  • China (中国)+86
  • Christmas Island+61
  • Cocos (Keeling) Islands+61
  • Colombia+57
  • Comoros (‫جزر القمر‬‎)+269
  • Congo (DRC) (Jamhuri ya Kidemokrasia ya Kongo)+243
  • Congo (Republic) (Congo-Brazzaville)+242
  • Cook Islands+682
  • Costa Rica+506
  • Côte d’Ivoire+225
  • Croatia (Hrvatska)+385
  • Cuba+53
  • Curaçao+599
  • Cyprus (Κύπρος)+357
  • Czech Republic (Česká republika)+420
  • Denmark (Danmark)+45
  • Djibouti+253
  • Dominica+1
  • Dominican Republic (República Dominicana)+1
  • Ecuador+593
  • Egypt (‫مصر‬‎)+20
  • El Salvador+503
  • Equatorial Guinea (Guinea Ecuatorial)+240
  • Eritrea+291
  • Estonia (Eesti)+372
  • Ethiopia+251
  • Falkland Islands (Islas Malvinas)+500
  • Faroe Islands (Føroyar)+298
  • Fiji+679
  • Finland (Suomi)+358
  • France+33
  • French Guiana (Guyane française)+594
  • French Polynesia (Polynésie française)+689
  • Gabon+241
  • Gambia+220
  • Georgia (საქართველო)+995
  • Germany (Deutschland)+49
  • Ghana (Gaana)+233
  • Gibraltar+350
  • Greece (Ελλάδα)+30
  • Greenland (Kalaallit Nunaat)+299
  • Grenada+1
  • Guadeloupe+590
  • Guam+1
  • Guatemala+502
  • Guernsey+44
  • Guinea (Guinée)+224
  • Guinea-Bissau (Guiné Bissau)+245
  • Guyana+592
  • Haiti+509
  • Honduras+504
  • Hong Kong (香港)+852
  • Hungary (Magyarország)+36
  • Iceland (Ísland)+354
  • India (भारत)+91
  • Indonesia+62
  • Iran (‫ایران‬‎)+98
  • Iraq (‫العراق‬‎)+964
  • Ireland+353
  • Isle of Man+44
  • Israel (‫ישראל‬‎)+972
  • Italy (Italia)+39
  • Jamaica+1
  • Japan (日本)+81
  • Jersey+44
  • Jordan (‫الأردن‬‎)+962
  • Kazakhstan (Казахстан)+7
  • Kenya+254
  • Kiribati+686
  • Kosovo+383
  • Kuwait (‫الكويت‬‎)+965
  • Kyrgyzstan (Кыргызстан)+996
  • Laos (ລາວ)+856
  • Latvia (Latvija)+371
  • Lebanon (‫لبنان‬‎)+961
  • Lesotho+266
  • Liberia+231
  • Libya (‫ليبيا‬‎)+218
  • Liechtenstein+423
  • Lithuania (Lietuva)+370
  • Luxembourg+352
  • Macau (澳門)+853
  • Macedonia (FYROM) (Македонија)+389
  • Madagascar (Madagasikara)+261
  • Malawi+265
  • Malaysia+60
  • Maldives+960
  • Mali+223
  • Malta+356
  • Marshall Islands+692
  • Martinique+596
  • Mauritania (‫موريتانيا‬‎)+222
  • Mauritius (Moris)+230
  • Mayotte+262
  • Mexico (México)+52
  • Micronesia+691
  • Moldova (Republica Moldova)+373
  • Monaco+377
  • Mongolia (Монгол)+976
  • Montenegro (Crna Gora)+382
  • Montserrat+1
  • Morocco (‫المغرب‬‎)+212
  • Mozambique (Moçambique)+258
  • Myanmar (Burma) (မြန်မာ)+95
  • Namibia (Namibië)+264
  • Nauru+674
  • Nepal (नेपाल)+977
  • Netherlands (Nederland)+31
  • New Caledonia (Nouvelle-Calédonie)+687
  • New Zealand+64
  • Nicaragua+505
  • Niger (Nijar)+227
  • Nigeria+234
  • Niue+683
  • Norfolk Island+672
  • North Korea (조선 민주주의 인민 공화국)+850
  • Northern Mariana Islands+1
  • Norway (Norge)+47
  • Oman (‫عُمان‬‎)+968
  • Pakistan (‫پاکستان‬‎)+92
  • Palau+680
  • Palestine (‫فلسطين‬‎)+970
  • Panama (Panamá)+507
  • Papua New Guinea+675
  • Paraguay+595
  • Peru (Perú)+51
  • Philippines+63
  • Poland (Polska)+48
  • Portugal+351
  • Puerto Rico+1
  • Qatar (‫قطر‬‎)+974
  • Réunion (La Réunion)+262
  • Romania (România)+40
  • Russia (Россия)+7
  • Rwanda+250
  • Saint Barthélemy+590
  • Saint Helena+290
  • Saint Kitts and Nevis+1
  • Saint Lucia+1
  • Saint Martin (Saint-Martin (partie française))+590
  • Saint Pierre and Miquelon (Saint-Pierre-et-Miquelon)+508
  • Saint Vincent and the Grenadines+1
  • Samoa+685
  • San Marino+378
  • São Tomé and Príncipe (São Tomé e Príncipe)+239
  • Saudi Arabia (‫المملكة العربية السعودية‬‎)+966
  • Senegal (Sénégal)+221
  • Serbia (Србија)+381
  • Seychelles+248
  • Sierra Leone+232
  • Singapore+65
  • Sint Maarten+1
  • Slovakia (Slovensko)+421
  • Slovenia (Slovenija)+386
  • Solomon Islands+677
  • Somalia (Soomaaliya)+252
  • South Africa+27
  • South Korea (대한민국)+82
  • South Sudan (‫جنوب السودان‬‎)+211
  • Spain (España)+34
  • Sri Lanka (ශ්‍රී ලංකාව)+94
  • Sudan (‫السودان‬‎)+249
  • Suriname+597
  • Svalbard and Jan Mayen+47
  • Swaziland+268
  • Sweden (Sverige)+46
  • Switzerland (Schweiz)+41
  • Syria (‫سوريا‬‎)+963
  • Taiwan (台灣)+886
  • Tajikistan+992
  • Tanzania+255
  • Thailand (ไทย)+66
  • Timor-Leste+670
  • Togo+228
  • Tokelau+690
  • Tonga+676
  • Trinidad and Tobago+1
  • Tunisia (‫تونس‬‎)+216
  • Turkey (Türkiye)+90
  • Turkmenistan+993
  • Turks and Caicos Islands+1
  • Tuvalu+688
  • U.S. Virgin Islands+1
  • Uganda+256
  • Ukraine (Україна)+380
  • United Arab Emirates (‫الإمارات العربية المتحدة‬‎)+971
  • United Kingdom+44
  • United States+1
  • Uruguay+598
  • Uzbekistan (Oʻzbekiston)+998
  • Vanuatu+678
  • Vatican City (Città del Vaticano)+39
  • Venezuela+58
  • Vietnam (Việt Nam)+84
  • Wallis and Futuna (Wallis-et-Futuna)+681
  • Western Sahara (‫الصحراء الغربية‬‎)+212
  • Yemen (‫اليمن‬‎)+967
  • Zambia+260
  • Zimbabwe+263
  • Åland Islands+358
1
2
3

Get Access to Our Resources

Stay in the loop and don’t miss a thing!

  • United States+1
  • United Kingdom+44
  • Afghanistan (‫افغانستان‬‎)+93
  • Albania (Shqipëri)+355
  • Algeria (‫الجزائر‬‎)+213
  • American Samoa+1
  • Andorra+376
  • Angola+244
  • Anguilla+1
  • Antigua and Barbuda+1
  • Argentina+54
  • Armenia (Հայաստան)+374
  • Aruba+297
  • Australia+61
  • Austria (Österreich)+43
  • Azerbaijan (Azərbaycan)+994
  • Bahamas+1
  • Bahrain (‫البحرين‬‎)+973
  • Bangladesh (বাংলাদেশ)+880
  • Barbados+1
  • Belarus (Беларусь)+375
  • Belgium (België)+32
  • Belize+501
  • Benin (Bénin)+229
  • Bermuda+1
  • Bhutan (འབྲུག)+975
  • Bolivia+591
  • Bosnia and Herzegovina (Босна и Херцеговина)+387
  • Botswana+267
  • Brazil (Brasil)+55
  • British Indian Ocean Territory+246
  • British Virgin Islands+1
  • Brunei+673
  • Bulgaria (България)+359
  • Burkina Faso+226
  • Burundi (Uburundi)+257
  • Cambodia (កម្ពុជា)+855
  • Cameroon (Cameroun)+237
  • Canada+1
  • Cape Verde (Kabu Verdi)+238
  • Caribbean Netherlands+599
  • Cayman Islands+1
  • Central African Republic (République centrafricaine)+236
  • Chad (Tchad)+235
  • Chile+56
  • China (中国)+86
  • Christmas Island+61
  • Cocos (Keeling) Islands+61
  • Colombia+57
  • Comoros (‫جزر القمر‬‎)+269
  • Congo (DRC) (Jamhuri ya Kidemokrasia ya Kongo)+243
  • Congo (Republic) (Congo-Brazzaville)+242
  • Cook Islands+682
  • Costa Rica+506
  • Côte d’Ivoire+225
  • Croatia (Hrvatska)+385
  • Cuba+53
  • Curaçao+599
  • Cyprus (Κύπρος)+357
  • Czech Republic (Česká republika)+420
  • Denmark (Danmark)+45
  • Djibouti+253
  • Dominica+1
  • Dominican Republic (República Dominicana)+1
  • Ecuador+593
  • Egypt (‫مصر‬‎)+20
  • El Salvador+503
  • Equatorial Guinea (Guinea Ecuatorial)+240
  • Eritrea+291
  • Estonia (Eesti)+372
  • Ethiopia+251
  • Falkland Islands (Islas Malvinas)+500
  • Faroe Islands (Føroyar)+298
  • Fiji+679
  • Finland (Suomi)+358
  • France+33
  • French Guiana (Guyane française)+594
  • French Polynesia (Polynésie française)+689
  • Gabon+241
  • Gambia+220
  • Georgia (საქართველო)+995
  • Germany (Deutschland)+49
  • Ghana (Gaana)+233
  • Gibraltar+350
  • Greece (Ελλάδα)+30
  • Greenland (Kalaallit Nunaat)+299
  • Grenada+1
  • Guadeloupe+590
  • Guam+1
  • Guatemala+502
  • Guernsey+44
  • Guinea (Guinée)+224
  • Guinea-Bissau (Guiné Bissau)+245
  • Guyana+592
  • Haiti+509
  • Honduras+504
  • Hong Kong (香港)+852
  • Hungary (Magyarország)+36
  • Iceland (Ísland)+354
  • India (भारत)+91
  • Indonesia+62
  • Iran (‫ایران‬‎)+98
  • Iraq (‫العراق‬‎)+964
  • Ireland+353
  • Isle of Man+44
  • Israel (‫ישראל‬‎)+972
  • Italy (Italia)+39
  • Jamaica+1
  • Japan (日本)+81
  • Jersey+44
  • Jordan (‫الأردن‬‎)+962
  • Kazakhstan (Казахстан)+7
  • Kenya+254
  • Kiribati+686
  • Kosovo+383
  • Kuwait (‫الكويت‬‎)+965
  • Kyrgyzstan (Кыргызстан)+996
  • Laos (ລາວ)+856
  • Latvia (Latvija)+371
  • Lebanon (‫لبنان‬‎)+961
  • Lesotho+266
  • Liberia+231
  • Libya (‫ليبيا‬‎)+218
  • Liechtenstein+423
  • Lithuania (Lietuva)+370
  • Luxembourg+352
  • Macau (澳門)+853
  • Macedonia (FYROM) (Македонија)+389
  • Madagascar (Madagasikara)+261
  • Malawi+265
  • Malaysia+60
  • Maldives+960
  • Mali+223
  • Malta+356
  • Marshall Islands+692
  • Martinique+596
  • Mauritania (‫موريتانيا‬‎)+222
  • Mauritius (Moris)+230
  • Mayotte+262
  • Mexico (México)+52
  • Micronesia+691
  • Moldova (Republica Moldova)+373
  • Monaco+377
  • Mongolia (Монгол)+976
  • Montenegro (Crna Gora)+382
  • Montserrat+1
  • Morocco (‫المغرب‬‎)+212
  • Mozambique (Moçambique)+258
  • Myanmar (Burma) (မြန်မာ)+95
  • Namibia (Namibië)+264
  • Nauru+674
  • Nepal (नेपाल)+977
  • Netherlands (Nederland)+31
  • New Caledonia (Nouvelle-Calédonie)+687
  • New Zealand+64
  • Nicaragua+505
  • Niger (Nijar)+227
  • Nigeria+234
  • Niue+683
  • Norfolk Island+672
  • North Korea (조선 민주주의 인민 공화국)+850
  • Northern Mariana Islands+1
  • Norway (Norge)+47
  • Oman (‫عُمان‬‎)+968
  • Pakistan (‫پاکستان‬‎)+92
  • Palau+680
  • Palestine (‫فلسطين‬‎)+970
  • Panama (Panamá)+507
  • Papua New Guinea+675
  • Paraguay+595
  • Peru (Perú)+51
  • Philippines+63
  • Poland (Polska)+48
  • Portugal+351
  • Puerto Rico+1
  • Qatar (‫قطر‬‎)+974
  • Réunion (La Réunion)+262
  • Romania (România)+40
  • Russia (Россия)+7
  • Rwanda+250
  • Saint Barthélemy+590
  • Saint Helena+290
  • Saint Kitts and Nevis+1
  • Saint Lucia+1
  • Saint Martin (Saint-Martin (partie française))+590
  • Saint Pierre and Miquelon (Saint-Pierre-et-Miquelon)+508
  • Saint Vincent and the Grenadines+1
  • Samoa+685
  • San Marino+378
  • São Tomé and Príncipe (São Tomé e Príncipe)+239
  • Saudi Arabia (‫المملكة العربية السعودية‬‎)+966
  • Senegal (Sénégal)+221
  • Serbia (Србија)+381
  • Seychelles+248
  • Sierra Leone+232
  • Singapore+65
  • Sint Maarten+1
  • Slovakia (Slovensko)+421
  • Slovenia (Slovenija)+386
  • Solomon Islands+677
  • Somalia (Soomaaliya)+252
  • South Africa+27
  • South Korea (대한민국)+82
  • South Sudan (‫جنوب السودان‬‎)+211
  • Spain (España)+34
  • Sri Lanka (ශ්‍රී ලංකාව)+94
  • Sudan (‫السودان‬‎)+249
  • Suriname+597
  • Svalbard and Jan Mayen+47
  • Swaziland+268
  • Sweden (Sverige)+46
  • Switzerland (Schweiz)+41
  • Syria (‫سوريا‬‎)+963
  • Taiwan (台灣)+886
  • Tajikistan+992
  • Tanzania+255
  • Thailand (ไทย)+66
  • Timor-Leste+670
  • Togo+228
  • Tokelau+690
  • Tonga+676
  • Trinidad and Tobago+1
  • Tunisia (‫تونس‬‎)+216
  • Turkey (Türkiye)+90
  • Turkmenistan+993
  • Turks and Caicos Islands+1
  • Tuvalu+688
  • U.S. Virgin Islands+1
  • Uganda+256
  • Ukraine (Україна)+380
  • United Arab Emirates (‫الإمارات العربية المتحدة‬‎)+971
  • United Kingdom+44
  • United States+1
  • Uruguay+598
  • Uzbekistan (Oʻzbekiston)+998
  • Vanuatu+678
  • Vatican City (Città del Vaticano)+39
  • Venezuela+58
  • Vietnam (Việt Nam)+84
  • Wallis and Futuna (Wallis-et-Futuna)+681
  • Western Sahara (‫الصحراء الغربية‬‎)+212
  • Yemen (‫اليمن‬‎)+967
  • Zambia+260
  • Zimbabwe+263
  • Åland Islands+358

What’s Your Occupation?

Help us personalize the content for you.

What Interests You the Most?

Help us personalize the content for you.

Filters

Persona Icon
Persona
Tags Icon
Tags
Annual Reports Plus Icon
Award Book Plus Icon
Case Studies Plus Icon
Free Publications Plus Icon
Magazine Plus Icon
Building Systems Plus Icon
Codes & Standards Plus Icon
Industry News Plus Icon
Why Wood (FAQ) Plus Icon
Wood Products Plus Icon
Acoustics Plus Icon
Design Examples Plus Icon
Engineering Plus Icon
Fire Resistance Plus Icon
Insurance Plus Icon
Mass Timber Plus Icon
Date Icon
Date
Line Separator